Barriers and Opportunities for 2-Year and 4-Year STEM Degrees: Systemic Change to Support Students’ Diverse Pathways

with funding from:
National Science Foundation
S.D. Bechtel Jr. Foundation
Alfred P. Sloan Foundation
Study Charge

• Review evidence related to barriers facing 2- and 4-year undergraduates who intend to major in STEM and opportunities for overcoming these barriers.

• Provide research-based guidance to inform policies and programs aimed to attract and retain students to complete associate’s and bachelor’s degrees in STEM disciplines.
Related Reports

www.nap.edu
Committee

Shirley Malcom (Chair), American Association for the Advancement of Science

Cynthia Atman, Center for Engineering Learning and Teaching, University of Washington

George Boggs, American Association of Community Colleges (emeritus)

Pamela Brown, Office of the Provost, New York City College of Technology, City University of New York

Peter Bruns, Howard Hughes Medical Institute (emeritus)

Tabbye Chavous, Departments of Psychology and Educational Studies, University of Michigan

Charles De Leone, Department of Physics, California State University, San Marcos

Frank Dobbin, Department of Sociology, Harvard University

S. James Gates, Jr., Department of Physics, University of Maryland

BOARD ON SCIENCE EDUCATION

The National Academies of
SCIENCE • ENGINEERING • MEDICINE
Major Topics (Chapters)

- Multiple STEM Pathways
- Why students enter, stay, or leave - the culture of undergraduate STEM education
- Instructional practices, departmental leadership, and co-curricular supports
- Why students stay or leave - institutional, state, and national policies
- Leading and sustaining change
Cumulative percentage of 2004 STEM aspirants who completed STEM degrees in 4, 5, and 6 years

Source: Eagan et al., 2014 (Fig 7)
Degrees awarded in 2012 in STEM fields in Public, Private Nonprofit, and Private For-Profit Institutions

Source: Kinser, 2014
STEM degrees in 2012 from Public, Private Nonprofit, and Private For-Profit, by students’ race and ethnicity

Source: Kinser, 2014
Percentage of all undergraduate STEM students with various debt levels by type of institution

Source: Kirshtein, 2013c (p1)
Undergraduate debt in STEM by minority status

Source: Kirshtein, 2013c (p2)
Conclusions and Recommendations
Today’s STEM Students

CONCLUSION 1—There is an opportunity to expand and diversify the nation’s STEM workforce and STEM-skilled workers in all fields if there is a commitment to appropriately support students through degree completion and provide more opportunities to engage in high-quality STEM learning and experiences.

CONCLUSION 2—STEM aspirants increasingly navigate the undergraduate education system in new and complex ways. It takes students longer for completion of degrees, there are many patterns of student mobility within and across institutions, and the accommodation and management of student enrollment patterns can affect how quickly and even whether a student earns a STEM degree.
Today’s STEM Students

CONCLUSION 3—National, state, and institutional undergraduate data systems often are not structured to gather information needed to understand how well the undergraduate education system and institutions of higher education are serving students.
Today’s STEM Students

RECOMMENDATION 1—Data collection systems should be adjusted to collect information to help departments and institutions better understand the nature of the student populations they serve and the pathways these students take to complete STEM degrees.
Today’s STEM Students

RECOMMENDATION 2—Federal agencies, foundations, and other entities that fund research in undergraduate STEM education should prioritize research to assess whether enrollment mobility in STEM is a response to financial, institutional, individual, or other factors, both individually and collectively, and to improve understanding of how student progress in STEM, in comparison with other disciplines, is affected by enrollment mobility.
Institutional Support for Students

CONCLUSION 4—Better alignment of STEM programs, instructional practices, and student supports is needed in institutions to meet the needs of the populations they serve. Programming and policies that address the climate of STEM departments and classrooms, the availability of instructional supports and authentic STEM experiences, and the implementation of effective teaching practices together can help students overcome key barriers to earning a STEM degree, including the time to degree and the price of a STEM degree.
Institutional Support for Students

RECOMMENDATION 3—Federal agencies, foundations, and other entities that support research in undergraduate STEM education should support studies with multiple methodologies and approaches to better understand the effectiveness of various co-curricular programs.
Institutional Support for Students

RECOMMENDATION 4—Institutions, states, and federal policy makers should better align educational policies with the range of education goals of students enrolled in 2- and 4-year institutions. Policies should account for the fact that many students take more than 6 years to graduate and should reward 2- and 4-year institutions for their contributions to the educational success of students they serve, which includes not only those who graduate.
Institutional Support for Students

RECOMMENDATION 5—Institutions of higher education, disciplinary societies, foundations, and federal agencies that fund undergraduate education should focus their efforts in a coordinated manner on critical issues to support STEM strategies, programs, and policies that can improve STEM instruction.
Institutional Support for Students

RECOMMENDATION 6—Accrediting agencies, states, and institutions should take steps to support increased alignment of policies that can improve the transfer process for students.

RECOMMENDATION 7—State and federal agencies and accrediting bodies together should explore the efficacy and tradeoffs of different articulation agreements and transfer policies.
Systemic and Sustainable Change in STEM Education

CONCLUSION 5—There is no single approach that will improve the educational outcomes of all STEM aspirants. The nature of U.S. undergraduate STEM education will require a series of interconnected and evidence-based approaches to create systemic organizational change for student success.
Systemic and Sustainable Change in STEM Education

CONCLUSION 6—Improving undergraduate STEM education for all students will require a more systemic approach to change that includes use of evidence to support institutional decisions, learning communities and faculty development networks, and partnerships across the education system.
Systemic and Sustainable Change in STEM Education

RECOMMENDATION 8—Institutions should consider how expanded and improved co-curricular supports for STEM students can be informed by and integrated into work on more systemic reforms in undergraduate STEM education to more equitably serve their student populations.

RECOMMENDATION 9—Disciplinary departments, institutions, university associations, disciplinary societies, federal agencies, and accrediting bodies should work together to support systemic and long-lasting changes to undergraduate STEM education.