This invention recognizes the rate limiting step in the pathway of carotenoid and isoprenoid production and demonstrates the utility in genetic engineering of a polynucleotide sequence to express a higher level of enzyme. This leads to the increased production of isoprenoids and carotenoids than a corresponding wild algal cell.

MARKET

Isoprenoids are industrially relevant and are compounds of high value with global markets in the range of USD 1 billion per annum. The global carotenoids market is estimated to be valued at USD 1.24 Billion in 2016 and projected to reach USD 1.53 Billion by 2021, at a CAGR of 3.78% from 2016 to 2021.

This invention adds incremental value to biofuel/renewable energy. The biofuels production in top and emerging countries is now expected to grow from 24,326.7 million gallons to reach 50,921.4 million gallons by 2019 at a CAGR of 9.6% from 2013 to 2019.

APPLICATIONS

- Isoprenoids derived from natural sources are used as nutraceuticals, anti-cancer and anti-malarial drugs, in the production of biofuels and are precursors for the synthesis of carotenoids.
- Carotenoids are pigments used in food supplements, pharmaceuticals, electro-optic applications, animal feed additives, colorants, etc.
- Biofuels are currently being used in transportation, power generation, and heat.
- The use of biofuels helps in oil price moderation.
- It plays an important role in economic security, energy security and to restrict climate change.

ADVANTAGES

This invention recognizes the rate limiting step in the pathway of carotenoid and isoprenoid production and demonstrates the utility in genetic engineering of a polynucleotide sequence to express a higher level of enzyme. This leads to the increased production of isoprenoids and carotenoids than a corresponding wild algal cell.

TEAM (as during the research)

Dr. Juergen Polle, Professor, Brooklyn College
Dr. Duc Tran, Research Associate, Brooklyn College (at the time of this research)